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Numerical study of scars in a chaotic billiard
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We study numerically the scaling properties of scars in stadium billiard. Using the semiclassical criterion,
we have searched systematically the scars of the same type through a very wide range, from ground state to as
high as the 1 millionth state. We have analyzed the integrated probability density along the periodic orbit. The
numerical results confirm that the average intensity of certain types of scars is independent of\ rather than
scales withA\. Our findings confirm the theoretical predictions of Robnik~1989!. @S1063-651X~97!14205-2#

PACS number~s!: 05.45.1b, 03.65.Ge, 03.65.Sq
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Eigenstates of a bound quantum system whose clas
counterpart is chaotic are of great interest in the fast de
oping field of ‘‘quantum chaos.’’ Among many others, sca
are one of the most interesting and striking topics. Since
discovery@1,2#, much progress has been achieved. On
theoretical side, Bogomolny@3# developed semiclassica
theory of scars in configuration space, and Berry@4# per-
formed a similar analysis in phase space using the Wig
function. According to this theory, the intensity of a sc
goes asA\. Based on the semiclassical evaluation of t
Green function of the Schro¨dinger equation in terms of th
classical orbit, Robnik@5# has developed a theory, and pr
dicted that if the scar is supported by many periodic orb
the maximal intensity of the scar is independent of\, al-
though its geometry can be determined by Bogomoln
theory. Most recently, Klakow and Smilansky@6# used a
scattering quantization approach for this problem. Paralle
the theoretical developments, there have also been many
merical @7,8# and experimental studies@9#.

Unfortunately, due to the limit of the numerical tec
niques and the computer facilities, most of the numeri
studies up to now are restricted to a very low energy ran
which is too low to verify the theoretical predictions in th
very far semiclassical limit, particularly for Robnik’s theor
In this paper, by using our numerical code of the improv
plane wave decomposition method~PWDM! ~for more de-
tails about Heller’s PWDM, please see@10#, while for the
improved PWDM, we will discuss it in another paper@14#!,
we are successful to go as high as 1 millionth state, whic
very deep in semiclassical regime for the stadium billia
With the help of the semiclassical criterion@5#, we found
many consecutive scars in several different energy ran
which spans 2 orders of magnitude in the wave vector, th
fore, we are able to study the properties of scars, such a
intensity and profiles in the very far semiclassical limit.

To make the numerical data significant, we need eno
ensembles of scars of the same type. Therefore, our first
is to collect scars of the same type in a wide range of ene
We begin from a very low state, e.g., the ground state.
long as we find the first scar, say, e.g., at wave vectork0,
then we can use the semiclassical criterion to estimate
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next scar. According to the semiclassical theory@3–5#, the
scar is most likely to occur if quantized, i.e.,

S52p\S n1
a

2 D , n50,1,2, . . . . ~1!

S is the action along the periodic orbit,a is the Maslov
phase. It must be pointed out that the semiclassical the
cannot predict the individual state at which the scar will o
cur. Instead, if we have already found one scar, say, atk0,
then the semiclassical theory tells us that the eigenstate
the wave vector ofk06Dk most likely will be scarred.
Dk52p\/L, L is the length of the periodic orbit. In ou
study we put\51, so the inverse of the wave vectork plays
the role of\; i.e., k goes to infinity indicates the semiclass
cal limit. It has been verified in our numerical study that th
criterion is very helpful and very successful in searching
and collecting scars. As we shall see later, in many cases
criterion is accurate within one mean level spacing, nam
the scar occurs at the eigenstate whose eigenenergy rou
equals the predicted energy.

With the help of the semiclassical quantization criteri
equation~1!, we have found about 100 examples of the sa
type of scar at different energy ranges. One such examp
shown in Fig. 1. The eigenvalue of this eigenstate
k51328.153 849, which corresponds to the sequential n
ber 250 034 for odd-odd parity, and to the index of abo
1 001 408 when all parities are taken into account. To
surprise, in addition to this one, we have found quite a f
examples of this type of scarred state in such a high le
This implies that the scars survive the semiclassical lim
Does this finding contradict Shnirlman’s theorem@11#,
which states that as the energy goes to infinity, the proba
ity density of most eigenstates of a chaotic billiard a
proaches a uniform distribution? To test this, we have inv
tigated the statistics of the probability density distribution
the wave function, and found that it is an excellent Gauss
distribution, although there is a pronounced density arou
the periodic orbit.

In order to understand the scar properties quantitativ
we have investigated the following pronounced~excess! in-
tensity in a thin tube along the periodic orbit~see Fig. 2!,
which is defined by
5376 © 1997 The American Physical Society
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FIG. 1. The probability density plot for a scarred eigenstate of odd-odd parity. The wave numberk51328.153 849, which correspond
to index 250 034 using the Weyl formula~odd-odd!; thus it corresponds to approximately the 1 001 408th eigenstate for the total bil
The scar is obviously supported by the diamond-shaped periodic orbit shown in Fig. 2. The stadium has the parameter of circ
R51 and the straight line length 2. In this figure, the unit length is about 211 de Broglie wavelengths.
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*c2~x!dx

*^c2~x!&dx
21, ~2!

wherec(x) is the eigenfunction atx. ^c2(x)& is the average
probability density inside the billiard, which is 1/A accord-
ing to the semiclassical theory@11–13#. A is area of the
billiard. The integral is taken over a thin tube around t
periodic orbit, which is presented in Fig. 2.

According to Robnik’s theory@5#, although the geometry
of a scar is determined by a single short periodic orbit,
intensity profile is nevertheless determined by the sum
contributions from similar but longer periodic orbits, whic
‘‘live’’ in the homoclinic neighborhood close to the stab
and unstable manifolds of the primitive orbit. Taking in
account all these orbits, the pronounced intensity of the s
defined by Eq.~2! can be described by the following for
mula:

I'n (
n51

`
sin~nS1 /\!

sinh~nlt/2!
21, ~3!

whereS1 is the action along the primitive periodic orbit,l is
the Lyapunov exponent of the primitive orbit with the perio
of t, the summation overn is due to the repetitions of th
orbit, andn is the number of contribution orbits. Equatio
~3! states thatthe maximal intensityof the scar, when sup
ported by many periodic orbits, is independent of\. This
thoeretical prediction is different from that of Bogomoln
But, it does not contradict that of Bogomolny at all; instea
it is an extension of Bogomolny’s theory to the scars cau
by many periodic orbits. These two theories describe diff
ent types of scars. Indeed, we have also found the scar t
whose intensity depends onA\, which is exactly predicted
by Bogomolny’s theory. However, since other authors@8#
have already verified this theoretical prediction, we will n
repeat this in this paper; we shall concentrate on the s
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,
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that cannot be determined by Bogomolny’s theory, but c
be described by Robnik’s theory.

In Fig. 3, we show six representative examples of t
intensity versus the width of the tube (D) in units of de
Broglie wavelength around the periodic orbit. These six e
amples are the same type of scar, namely, the diamo
shaped scar shown in Fig. 1. They go from the very low st
k510.241 095 to the very deep semiclassical regime
k51328.153 849.

The first thing one can see from these profile figures
that the scar intensity has a maximum at the width of ab
1–2 de Brodglie wavelengths from the periodic orbit. Th
can be explained by Robnik’s theory. The semiclassi
waves associated with individual daughter orbits interf
constructively with each other only within a tube of wid
1–2 de Broglie wavelengths. The second important re
from this figure is that the magnitude of the maximum do
not change too much although the eigenenergy changes m
than 100 times.

Moreover, after checking the eigenenergies of these
examples carefully, we have found that the semiclassical
terion works very well, although we go from one scar state
another by jumping even up to a few hundred scarred sta

FIG. 2. The integral region around the periodic orbit that
taken in Eq.~2!. The width of the tube isD measured perpendicula
to the periodic orbit.
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FIG. 3. The integrated scar intensityI vs the
width of the integrating tube in unit of the d
Broglie wavelength for the scar type shown
Fig. 1. We show six different eigenstates at d
ferent energy ranges.
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For instance, starting from the first eigenvectork0
510.241 095, if we go through 65 scarred states, we h
k5k0165Dk5101.563 684, which is very close to the exa
one kexact5101.568 640.~In this paper, we study only the
eigenstates with odd-odd parity, so the length of the perio

FIG. 4. The maximum of integrated scar intensity vs wave nu
berk aroundk5125. The type of scar is the same as shown in F
1 ~the diamond shape!. Here we see clearly that the wave numb
interval between two consecutive scars is very close to 2p/L
~5 1.40496!, as predicted by the semiclassical quantization con
tion Eq. ~1!.
e
t

ic

orbit shown in Fig. 2 isL52A5, rather than 4A5 for the
total billiard, thus,Dk52p/L51.404 96). The deviation is
less than one mean level spacing. This procedure applies
to many other scarred states and it can be verified readily
other states given in Fig. 3.

The next very important question is that how does t
maximal integrated intensity depend on the eigenenergy
the\? Firstly, our numerical results show that around a c
tain k, it changes from scarred state to state. This is show

-
.

i-

FIG. 5. The locally averaged~over a small group of consecutiv
scarred states! maximum of integrated scar excess intensity vs wa
numberk. The bullet represents the numerical data, and the s
line is the best least-squares fit.
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55 5379NUMERICAL STUDY OF SCARS IN A CHAOTIC BILLIARD
Fig. 4, where we plot 26 consecutive scarred states aro
k5125.~Note that there are two cases in which two conse
tive eigenstates are near degenerate, thus both of them
scarred.! Again, from this figure we can see clearly that t
semiclassical criterion~1! works excellently. The interval be
tween two scarred states is almost constant and app
mately equals 2p/L. The maximal integrated intensity, how
ever, fluctuates from state to state, which cannot
explained by the existing semiclassical approaches. Th
still an open problem deserving of further theoretical a
numerical investigations.

The results shown in Fig. 4 imply that in order to ma
the study of the dependence of the maximal integrated in
sity on energy significant, we should take certain kinds
ensemble averaging. In our numerical study, we have
formed such averaging around certaink over many scarred
states~usually about 10 states!. The averaged data are plotte
in Fig. 5. The best least-squares fit gives rise to

^I m&50.73/ka, a50.0660.03, ~4!

here ^ & means the local average. The exponenta is very
close to zero and is far from 1/2 as predicted by Bogom
ny’s theory. This fact means that the maximal integrated
tensity does not depend on the energy or\ for the scar type
shown in this paper. This discovery is very different fro
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previous ones@8# and cannot be explained by the semicla
sical theory of Bogomolny@3# and Berry @4#, however, it
confirms quantitatively the theoretical prediction of Robn
@5#, which states that the maximal intensity of a scar is ind
-pendent of\ if the scar is supported by many orbits, a
mentioned above.

In this paper, we have studied intensively the scars i
stadium billiard, and have shown numerically that the se
classical criterion~1! works very well from very low state to
that in the very far semiclassical limit. Furthermore, we ha
analyzed the scaling property of a scar with\ and found that
for the scar type shown in this paper, the maximal integra
density fluctuates from scarred state to state, but the lo
average intensity does not change with energy. This find
confirms Robnik’s scar theory of multiple periodic orbits@5#.
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