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Numerical study of scars in a chaotic billiard
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We study numerically the scaling properties of scars in stadium billiard. Using the semiclassical criterion,
we have searched systematically the scars of the same type through a very wide range, from ground state to as
high as the 1 millionth state. We have analyzed the integrated probability density along the periodic orbit. The
numerical results confirm that the average intensity of certain types of scars is indepenfierttioér than
scales withy%. Our findings confirm the theoretical predictions of Rob(iR89. [S1063-651X97)14205-3

PACS numbe(s): 05.45+b, 03.65.Ge, 03.65.Sq

Eigenstates of a bound quantum system whose classicakxt scar. According to the semiclassical thef8y-5|, the
counterpart is chaotic are of great interest in the fast develscar is most likely to occur if quantized, i.e.,
oping field of “quantum chaos.” Among many others, scars
are one of the most interesting and striking topics. Since its
discovery[1,2], much progress has been achieved. On the S=27h
theoretical side, Bogomolny3] developed semiclassical
theory of scars in configuration space, and Bgry per-
formed a similar analysis in phase space using the Wigner S is the action along the periodic orbit, is the Maslov
function. According to this theory, the intensity of a scarphase. It must be pointed out that the semiclassical theory
goes as\A. Based on the semiclassical evaluation of thecannot predict the individual state at which the scar will oc-
Green function of the Schdinger equation in terms of the cur. Instead, if we have already found one scar, sakyat
classical orbit, Robnik5] has developed a theory, and pre- then the semiclassical theory tells us that the eigenstates at
dicted that if the scar is supported by many periodic orbitsthe wave vector ofko*=Ak most likely will be scarred.
the maximal intensity of the scar is independenthagfal-  Ak=2wA/L, L is the length of the periodic orbit. In our
though its geometry can be determined by Bogomolny’sstudy we puti =1, so the inverse of the wave vectoplays
theory. Most recently, Klakow and Smilansk@] used a the role of#; i.e., k goes to infinity indicates the semiclassi-
scattering quantization approach for this problem. Parallel te@al limit. It has been verified in our numerical study that this
the theoretical developments, there have also been many noriterion is very helpful and very successful in searching for
merical[7,8] and experimental studig¢9]. and collecting scars. As we shall see later, in many cases this
Unfortunately, due to the limit of the numerical tech- criterion is accurate within one mean level spacing, namely,
niques and the computer facilities, most of the numericathe scar occurs at the eigenstate whose eigenenergy roughly
studies up to now are restricted to a very low energy rangesquals the predicted energy.
which is too low to verify the theoretical predictions in the  With the help of the semiclassical quantization criterion
very far semiclassical limit, particularly for Robnik’s theory. equation(1), we have found about 100 examples of the same
In this paper, by using our numerical code of the improvedype of scar at different energy ranges. One such example is
plane wave decomposition meth¢dWDM) (for more de- shown in Fig. 1. The eigenvalue of this eigenstate is
tails about Heller's PWDM, please s¢&0], while for the  k=1328.153 849, which corresponds to the sequential num-
improved PWDM, we will discuss it in another pagdéd]),  ber 250 034 for odd-odd parity, and to the index of about
we are successful to go as high as 1 millionth state, which i3 001 408 when all parities are taken into account. To our
very deep in semiclassical regime for the stadium billiard.surprise, in addition to this one, we have found quite a few
With the help of the semiclassical criterigh], we found examples of this type of scarred state in such a high level.
many consecutive scars in several different energy range¥his implies that the scars survive the semiclassical limit.
which spans 2 orders of magnitude in the wave vector, thereBoes this finding contradict Shnirlman’s theoreffil],
fore, we are able to study the properties of scars, such as thehich states that as the energy goes to infinity, the probabil-
intensity and profiles in the very far semiclassical limit. ity density of most eigenstates of a chaotic billiard ap-
To make the numerical data significant, we need enoughroaches a uniform distribution? To test this, we have inves-
ensembles of scars of the same type. Therefore, our first stejgated the statistics of the probability density distribution of
is to collect scars of the same type in a wide range of energythe wave function, and found that it is an excellent Gaussian
We begin from a very low state, e.g., the ground state. Aglistribution, although there is a pronounced density around
long as we find the first scar, say, e.g., at wave vekfor the periodic orbit.
then we can use the semiclassical criterion to estimate the In order to understand the scar properties quantitatively,
we have investigated the following pronoundgscess in-
tensity in a thin tube along the periodic orlitee Fig. 2,
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FIG. 1. The probability density plot for a scarred eigenstate of odd-odd parity. The wave nkmbd28.153 849, which corresponds
to index 250 034 using the Weyl formu(add-odd; thus it corresponds to approximately the 1 001 408th eigenstate for the total billiard.
The scar is obviously supported by the diamond-shaped periodic orbit shown in Fig. 2. The stadium has the parameter of circle radius
R=1 and the straight line length 2. In this figure, the unit length is about 211 de Broglie wavelengths.

JyA(x)dx that cannot be determined by Bogomolny’s theory, but can
T (A0)dx (20 be described by Robnik’s theory.
In Fig. 3, we show six representative examples of this

wherey(x) is the eigenfunction at. (%(x)) is the average intensity versus the width of the 'FubgD][ in_ units of o_Ie
probability density inside the billiard, which is.4/accord- Broglie wavelength around the periodic orbit. These Six ex-
ing to the semiclassical theoft1-13. A is area of the @mples are the same type of scar, namely, the diamond-
billiard. The integral is taken over a thin tube around theShaped scar shown in Fig. 1. They go from the very low state
periodic orbit, which is presented in Fig. 2. k=10.241 095 to the very deep semiclassical regime at
According to Robnik’s theory5], although the geometry K=1328.153 849. o .
of a scar is determined by a single short periodic orbit, the The first thing one can see from these profile figures is
intensity profile is nevertheless determined by the sum ofhat the scar intensity has a maximum at the width of about
contributions from similar but longer periodic orbits, which 1—2 de Brodglie wavelengths from the periodic orbit. This
“live” in the homoclinic neighborhood close to the stable €an be explained by Robnik's theory. The semiclassical
and unstable manifolds of the primitive orbit. Taking into Waves associated with individual daughter orbits interfere
account all these orbits, the pronounced intensity of the scgonstructively with each other only within a tube of width
defined by Eq.(2) can be described by the following for- 1-2 de Broglie wavelengths. The second important result

mula: from this figure is that the magnitude of the maximum does
not change too much although the eigenenergy changes more
1=y, SN 3 M oroe or. siter checking the ei ies of these si
~v2, s m2) & 3 oreover, after checking the eigenenergies of these six

examples carefully, we have found that the semiclassical cri-
terion works very well, although we go from one scar state to

wheres, is the action along the primitive periodic Orbitis 5 qther by jumping even up to a few hundred scarred states.

the Lyapunov exponent of the primitive orbit with the period
of 7, the summation oven is due to the repetitions of the
orbit, and v is the number of contribution orbits. Equation
(3) states thathe maximal intensityf the scar, when sup-
ported by many periodic orbits, is independentof This
thoeretical prediction is different from that of Bogomolny.
But, it does not contradict that of Bogomolny at all; instead,
it is an extension of Bogomolny’s theory to the scars caused
by many periodic orbits. These two theories describe differ-
ent types of scars. Indeed, we have also found the scar types
whose intensity depends o¥:, which is exactly predicted

by Bogomolny’s theory. However, since other auth{8$ FIG. 2. The integral region around the periodic orbit that is
have already verified this theoretical prediction, we will nottaken in Eq(2). The width of the tube i® measured perpendicular
repeat this in this paper; we shall concentrate on the scats the periodic orbit.
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For instance, starting from the first eigenvecté  orbit shown in Fig. 2 isc=2/5, rather than 45 for the
=10.241 095, if we go through 65 scarred states, we havestal billiard, thus,Ak=2x/L£=1.404 96). The deviation is
k=ko+65Ak=101.563 684, which is very close to the exact |ess than one mean level spacing. This procedure applies also
0ne Keyac= 101.568 640.(In this paper, we study only the to many other scarred states and it can be verified readily for
eigenstates with odd-odd parity, so the length of the periodiether states given in Fig. 3.

The next very important question is that how does this
maximal integrated intensity depend on the eigenenergy or
the 2 ? Firstly, our numerical results show that around a cer-
taink, it changes from scarred state to state. This is shown in
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FIG. 4. The maximum of integrated scar intensity vs wave num- k
berk aroundk=125. The type of scar is the same as shown in Fig.
1 (the diamond shapeHere we see clearly that the wave number  FIG. 5. The locally average@ver a small group of consecutive
interval between two consecutive scars is very close #//2  scarred stat¢snaximum of integrated scar excess intensity vs wave
(= 1.40496, as predicted by the semiclassical quantization condi-numberk. The bullet represents the numerical data, and the solid
tion Eqg. (). line is the best least-squares fit.
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Fig. 4, where we plot 26 consecutive scarred states aroungrevious one$8] and cannot be explained by the semiclas-
k=125.(Note that there are two cases in which two consecusical theory of Bogomolny3] and Berry[4], however, it
tive eigenstates are near degenerate, thus both of them atenfirms quantitatively the theoretical prediction of Robnik
scarred. Again, from this figure we can see clearly that the[5], which states that the maximal intensity of a scar is inde-
semiclassical criteriofil) works excellently. The interval be- -pendent of# if the scar is supported by many orbits, as
tween two scarred states is almost constant and approxinentioned above.

mately equals 2/L. The maximal integrated intensity, how- | this paper, we have studied intensively the scars in a
ever, fluctuates from state to state, which cannot bgiadium billiard, and have shown numerically that the semi-
explained by the existing semiclassical approaches. This igiassical criterior(1) works very well from very low state to
still an open problem deserving of further theoretical andy,a¢ i, the very far semiclassical limit. Furthermore, we have
numerical investigations. analyzed the scaling property of a scar wittand found that

The results shown in Fig. 4 imply that in order to make P : :
the study of the dependence of the maximal integrated inter}c-Or the scar type shown in this paper, the maximal integrated

sity on energy significant, we should take certain kinds Ofdensny fI_uctua'Fes from scarred state_ to state, b“t_”“? chal
ensemble averaging. In our numerical study, we have pelleverage intensity does not change with energy. This finding

formed such averaging around certéirover many scarred confirms Robnik’s scar theory of multiple periodic orkifg.

stategusually about 10 statesThe averaged data are plotted  The author would like to thank Dr. Marko Robnik for
in Fig. 5. The best least-squares fit gives rise to discussions. He is also very grateful to Dr. Felix Izrailev for
helpful discussions during the STATPHYS 19 in Xiamen
= a =
(Im)=0.734",  2=0.06=0.03, @ and during his visit in Como. This work was supported in
here () means the local average. The exponanis very part by the Research Grant Council Grant No. RGC/96-97/10
close to zero and is far from 1/2 as predicted by Bogomol2and the Hong Kong Baptist University Faculty Research
ny’s theory. This fact means that the maximal integrated inGrants No. FRG/95-96/11-09 and No. FRG/95-96/11-92. The
tensity does not depend on the energyidor the scar type work done in Slovenia was supported by the Ministry of
shown in this paper. This discovery is very different from Science and Technology of Republic of Slovenia.
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